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Scaling and universality in the aging Kinetics of the two-dimensional clock model
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We study numerically the aging dynamics of the two-dimensional p-state clock model after a quench from
an infinite temperature to the ferromagnetic phase or to the Kosterlitz-Thouless phase. The system exhibits the
general scaling behavior characteristic of nondisordered coarsening systems. For quenches to the ferromagnetic
phase, the value of the dynamical exponents suggests that the model belongs to the Ising-type universality
class. Specifically, for the integrated response function x(z,s) =s"f(¢/s), we find a, consistent with the value

a,=0.28 found in the two-dimensional Ising model.
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I. INTRODUCTION

The phase-ordering kinetics of systems quenched from a
high-temperature disordered state to an ordered phase or to a
critical phase is characterized by the growth of a character-
istic length L(7). In the late stage a power-law behavior

L(t) ~ 1= (1)

sets in, where z is the dynamical exponent, and dynamical
scaling [1] is observed. Accordingly, configurations of the
system at two subsequent times are statistically equivalent if
lengths are measured in units of L(z), namely if the rescaled
length x=r/L(r) is considered. This property is reflected by
the analytical form of physical observables. In the quench to
a critical point, for example, the equal-time order parameter
correlation function obeys the scaling form

G(r,1) ~ g (x), 2)

where d is the spatial dimensionality and # is the usual ex-
ponent of static critical phenomena. Scaling behaviors such
as Egs. (1), (2) are generic for growth kinetics in nonfrus-
trated, nondisordered systems and are observed regardless of
different specific details. Concerning the values of the expo-
nents, such as z or others entering different quantities, they
are expected to take the same value for systems belonging to
the same nonequilibrium universality class. It is well known
that systems undergoing a second order equilibrium phase
transition can be classified into static equilibrium universal-
ity classes according to the value of their critical indices.
These are found to depend only on a small set of parameters,
such as space dimensionality or the number of components
of the order parameter. In the same way, dynamic universal-
ity classes can also be introduced on the basis of the value of
dynamic exponents. This subject has been thoroughly studied
for the equilibrium critical dynamics [2], where the renor-
malization group provides the basic mechanism for scaling
and universality, analogously to the static case. By contrast,
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the same subject is not well understood in far from equilib-
rium systems [3,4].

In this paper we consider the phase-ordering kinetics of
the clock model with a p-fold degenerate ground state in two
dimensions. For p=4 this model has a single second order
phase transition separating a disordered from an ordered
phase. For p=5 a Kosterlitz-Thouless (KT) critical phase
also exists and the phase transitions are of the Kosterlitz-
Thouless type. We study numerically the model with p=3
and p=6 and a nonconserved order parameter, quenched to
the ordered region and, for the case p=6, also to the KT
phase. In previous works [5,6] the growth law (1) and the
scaling of G(r,t) in quenches to the ordered region were
analyzed; for quenches to a critical point, two time quantities
were studied in Ref. [3]. Here we extend these results pre-
senting a global analysis of the scaling properties for
quenches in the ordered and in the critical region, by consid-
ering one-time quantities, such as G(r, ), and two-time quan-
tities, such as the autocorrelation function and the integrated
response function. We find that the scaling forms expected
for all these quantities in nondisordered systems are obeyed,
although preasymptotic corrections are observed in the simu-
lated range of times. We may then conclude that the clock
model exhibits the generic scaling behavior characteristic of
phase-ordering systems in the late stage of the dynamics.
This calls for the question of the value of the dynamical
exponents and the issue of their universality, namely whether
the dynamics of the model is regulated by the same expo-
nents of other coarsening systems and whether their value
depends on p. Since in the KT phase critical exponents de-
pend continuously on temperature, this problem is pertinent
to the quench to the ordered phase. Among the most usually
considered two-dimensional statistical models of ferromag-
netism, the Ising and the XY model are those to which the
clock model can be naturally compared. These models are
particular cases, with p=2 and p=2°, of the clock model. The
former has a scalar order parameter and a discrete symmetry.
In the latter, the order parameter is a vector with N=2 com-
ponents and there is a continuous O(2) symmetry. The sym-
metry group of the model, together with the spatial dimen-
sionality, determines the types of topological defects.
Consequently, topological defects are interfaces or two-
dimensional vortices in the Ising and XY model, respectively.
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Since the nature of the topological defects controls several
equilibrium properties and the late stage ordering [1] these
models belong to different universality classes both in equi-
librium and out of equilibrium. The clock model is, in some
sense, intermediate between the Ising and XY model, because
the order parameter is a vector with two components, as in
the XY model, but there is a finite degeneracy of the ground
state, namely a discrete symmetry. Topological defects are
then both interfaces and vortices.

In this paper we show that the exponents measured for the
phase-ordering kinetics of the clock model with p=3, 6 are
consistent with those of the two-dimensional Ising model
quenched below the critical temperature. This suggests that
systems with a finite degeneracy of the ground state may
belong to the Ising nonequilibrium universality class, and
that the presence of other topological defects besides inter-
faces does not affect the universal properties of these sys-
tems.

This paper is organized as follows: In Sec. II we introduce
the model and define the main observables. In Sec. III we
discuss the general scaling behavior of systems quenched
into an ordered region, present the results of numerical simu-
lations of the clock model with p=3 and p=6, and compare
them with the behavior of the Ising model and of the XY
model. In Sec. IV we discuss the scaling properties of coars-
ening systems quenched to a critical phase and the results of
numerical simulations of the clock model with p=6
quenched into the KT phase. Section V contains the final
observations and the conclusions.

II. MODEL AND OBSERVABLES

The p-state clock model is defined by the Hamiltonian

Hlo]=-J &;-6;=—J> cos(6,- 6)), (3)
(ij) (i)

where 7; is a two-component unit vector spin pointing along
one of the directions 6,=2mn;/p, with n;e{1,2,...,p}, and
(ij) denotes nearest neighbors sites i, j on a lattice. We will
consider a square lattice in spatial dimension d=2. This spin
system is equivalent to the Ising model for p=2 and to the
XY model for p— e,

For p=4 the clock model has a critical point separating a
disordered from an ordered phase at 7=T;. For p=5 there
exist two transition temperatures T, and 7,>T; [7]. For T
<T, the system is ferromagnetic, and for 7>T7), it is in a
paramagnetic phase. Between these two temperatures, for
T,<T<T,, a KT phase [8] exists where the correlation
function behaves as G,,(r) ~|r|~"? with the anomalous di-
mension 7(7T) continuously depending on the temperature.
Both the transitions are of the KT type, namely the correla-
tion length diverges exponentially as T or T, are approached
from the ferromagnetic or paramagnetic phase, respectively.
Approximate analytic results [7] predict

4o

T/J=—=
! 1.7p%

(4)

and 7 to coincide with the KT temperature of the XY model
T,/J=0.95 (here and in the following we set the Boltzmann
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constant kg=1). The exponent 7(T) is expected [7] to vary
between 7(T,)=4/p> and %(T,)=1/4. Numerical simula-
tions [9] are consistent with these predictions.

A dynamics is introduced by randomly choosing a single
spin and updating it with Metropolis transition rate

w([o] — [o"]) = min[1,exp(— AE/T)]. (5)

Here [o] and [o”] are the spin configurations before and after
the move, and AE=H[c¢']|-H[o].

We consider the protocol where the system is initially
prepared in a high temperature uncorrelated state and then
quenched, at time #=0, to a final temperature T, in the ferro-
magnetic phase or in the KT phase. The characteristic size
L(r) grows until it becomes comparable with the system size
and the new equilibrium state at 7 is globally attained. For
an infinite system the final equilibrium state is never reached
and L(z) keeps growing indefinitely. In the late stage the
power law (1) sets in. The characteristic length L(7) can be
estimated from the knowledge of the two-point equal time
correlation function

G(r,1) =(a(t) - o(1)), (6)

where o,(t), (1) are spin variables at time 7 on two lattice
sites whose distance is r, and {: ) means an ensemble aver-
age, namely taken over different initial conditions and ther-
mal histories. Due to homogeneity, G(r,t) does not depend
separately on i an j but only on r. Enforcing this property we
will numerically compute the correlation in the following as

L

G(r,t) =
(r0=1y

PIIRCIORGIN (7
i jed,

where i runs over all the N sites of the lattice and J, is the set
of four points reached moving a distance r from i along the
horizontal or vertical directions. The methods to extract L(z)
from G(r,r) depend on the scaling properties of G(r,) and
differ if quenches in the ferromagnetic or in the KT phase are
considered, as discussed in Secs. III and IV.

The two time quantities that will be considered in this
paper are the autocorrelation function

C(t,5) =(0i(1) - 7(s)) (8)

and the integrated (auto)response function, or zero field
cooled susceptibility

X(t,s)zf dt'R(t,t"). 9)
The quantity
Kaf'(1)
R(t,t") = —_— , 10
=2 000 | (10

a being a generic vector component, is the response function
associated to the perturbation caused by an impulsive mag-

netic field h; switched on at time ¢’ <t. Recently, new effi-
cient methods for measuring the response function without
applying the perturbation have been introduced [10-12]. In
the following we will use the one derived in Ref. [12]. For
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spin systems subjected to a Markovian dynamics an out of
equilibrium generalization of the fluctuation dissipation theo-
rem was derived [13], relating the response functions to par-
ticular correlation functions of the unperturbed system. For
the integrated response function (9) it reads

Tx(t,s) = %lC(t,t) - C(t,5) = f t (a,(r) - Ei(t’)>dt’} ,
(11)

where

Blol=-2 (6;- )w(lo]— [o']). (12)

=1
o

In this equation [o] and [¢'] are two configurations differing
only by the spin on site i, taking the values ¢; and &/, re-
spectively. The notation {7,(?) -E,(t’)} in Eq. (11) means the
average E[U]’[Ur]ceri-é,-[o-’]p([o-],t;[cr’],t’)p([o”],t’), where
p(La’],t’) is the probability to find the configuration [o'] at
time ¢’ and p([o],t;[0'],t’) is the joint probability between
[o] at time ¢ and [o'] at time #'.

Equation (11) allows us to compute the integrated re-
sponse function by measuring correlation functions on the
unperturbed system, avoiding the complications of the tradi-
tional methods where a perturbation is applied, and improv-
ing significantly the quality of the results [12].

III. QUENCHES TO T;<T;
A. General scaling properties

Let us start considering quenches from a high temperature
disordered phase to the ferromagnetic region. In this case one
observes the growth of compact domains separated by topo-
logical defects such as interfaces or vortices (see Fig. 2). As
a consequence, a sharp distinction can be made in the late
stage between spins belonging to the interior of domains
from those pertaining to the defects. The interior of the do-
mains very soon attains local equilibration in one of the bro-
ken symmetry equilibrium phases at 7y, whereas the degrees
of freedom around defects are out of equilibrium and are
responsible for the aging of the system. Observables such as
C(t,s), x(t,s), and G(r,1) take an addictive structure [14]

C(t,5) = Cy(t = 5) + C,(t,5), (13)

and similarly for x(z,s) and G(r,t). In the following, for
clarity, we will focus on C(z,s), but similar considerations
hold for the other quantities. The dynamics of the spins in the
bulk of domains provide the equilibrium contribution C,,(t
—s) while what is left over, C,,(t,s), accounts for the aging
behavior. Since equilibrium dynamics is well understood, the
behavior of Cy,(t—s) is generally well known. In particular,
at Ty=0 equilibrium dynamics is frozen and C,(1—s)=0. On
the other hand, much interest is focused on the aging part of
the aforementioned observables, which is less understood.
This contribution can be isolated by subtracting C(z—s),
computed in equilibrium, from C(z,s). However, for models
with a discrete symmetry, it is computationally much more
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FIG. 1. (Color online) C,(t,s) obtained with the two methods

described in the text is plotted against t—s for s=100, 200, 400,
800, 1600, 3200.

efficient to resort to a different method. This amounts to
study a modified system where T in the transition rate (5) is
set equal to zero if the spin &; to be updated belongs to the
bulk, namely if it is aligned with all its neighbors. Since the
bulk degrees of freedom, which alone contribute to C,(z
—s), feel T;=0, and C(r—s)=0 at T;=0, by computing ob-
servables with this modified dynamics one isolates the aging
term leaving other properties of the dynamics unchanged
[15]. In order to check this we have computed C(z,s) and
C,(t—s) with the Glauber dynamics in a system with p=3
quenched to 7y=1<T, and in an equilibrium system at the
same temperature. In Fig. 1 we compare C,,(t,s) obtained by
subtraction of these quantities through Eq. (13) (symbols)
and the same quantity obtained directly by means of a
quench simulation with the modified dynamics (continuous
lines). This figure shows an excellent agreement, confirming
that the modified dynamics is efficient and accurate. In the
remainder of this section therefore we will always present
results obtained with this modified dynamics.

In the late stage of the evolution, after a characteristic
time 7, when L(z) is much larger than all other microscopic
lengths, dynamical scaling is obeyed [1,6]. Accordingly, for
the correlation function one has

G og(r,1) = M?g(x), (14)

where x=r/L(t) and M is the equilibrium magnetization at
T;. In systems with a discrete symmetry and sharp interfaces,
a short distance behavior (x< 1) of the type 1—g(x)~x is
found [1,6], namely a Porod’s tail G(E,t)~k‘(d+'), in mo-
mentum space for large k [k>>L(¢)~']. This is known to be
true, in particular, for the clock model, for all p <o, although
the whole form of g(x) depends on p [6]. In systems with a
vector order parameter and an O(N) symmetry one has a
generalization of the Porod’s law [16], G(k, ) ~ k=N,
From Eq. (14) one can extract a quantity L;(f) propor-
tional to the typical domain size L(¢) from the condition
g(x):%, namely as the half height width of G,,(r,?). Alter-
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natively, a characteristic length L,(r) can be extracted as
Ly(1)=JdrG(r,1). Clearly, if Eq. (14) holds, L;(t) o Ly(7).

The size of domains can be related to the density of de-
fects p(z). For a coarsening system where topological defects
are only interfaces, such as the Ising model, one has a power
law behavior p(f)o°, with [1]

5=1/z. (15)

This result does not apply to systems with different defects,
such as vortices or others. In the case of vector O(N) (with
N=2) model [1,17] one has

5=2/z, (16)

and logarithmic corrections for N=2. In these cases p(f) pro-
vides an indirect, alternative method for the determination of
L(t), and hence of z. For the clock model, where defects are
interfaces and vortices, neither Eq. (15) or Eq. (16) can be
straightforwardly used. However, a simple inspection of the
configurations (see Fig. 2) suggests that, since vortices are
pointlike, their contribution to p(z) must be negligible in the
late stage. Therefore we expect Eq. (15) to be obeyed asymp-
totically.

The dynamical exponent z is believed to be universal for
quenches to the ordered phase 7,<<T,: the same value z=2
as for the Ising model is expected for every value of p [5,6]
in the clock model and for every N in O(N) models.

Coming to two-times quantities, the aging part of the au-
tocorrelation function is expected [1,14] to scale as

Cag(t’s):h(y), (17)

with y=t/s and h(y)~y™* for y>>1. The exponent \ is
believed to be the Fisher-Huse exponent which regulates the
large ¢ decay of the initial condition autocorrelation function
C(1,0)~ ™V, In the Ising model one has A=5/4. We are not
aware of a systematic study of this exponent in the XY
model. In Ref. [18] it is argued that this exponent depends on
T, and, for the particular case Tf=0.3 the value A=0.54 is
found. For the integrated response function scaling implies

Xag(t,8) = 57Xf(y). (18)
For p=2 the scaling function behaves as
J) ~y™, (19)

for y>> 1. Regarding the exponent a,, analytical calculations
in solvable scalar models or in the large-N model [19,20]
find the following dependence on dimensionality:

d—d,

o for d <dy
dy—dg

= 20
“ o0 with log corrections for d =d; 20

6 ford>dy,

where d; is the lower critical dimension of static critical
phenomena and dy; is an upper dimension that turns out to be
dy=3 or dy=4 for systems with a discrete or continuous
symmetry. This expression shows that the response of coars-
ening systems depends on dimensionality in a nontrivial way.
Numerical simulations [19,21,22] of scalar and O(N) vecto-
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FIG. 2. (Color online) Configuration of the system with p=3
(left) and p=6 (right), at t=3200.

rial systems, with conserved and nonconserved order param-
eter, are consistent with Eq. (20). The value of a is investi-
gated for systems with a discrete symmetry and a degeneracy
of the ground state larger than p=2.

Notice that, for a given dimensionality d<<d, Eq. (20)
predicts a different exponent for systems with a continuous
or a discrete symmetry. In the case d=2, for instance, for the
Ising model Eq. (20) gives a,=1/4 while for the XY model
aX=O. Therefore, for the model under investigation, the value
of a, may be used to discriminate between the Ising and XY
nonequilibrium universality classes.

Finally, let us recall that the scaling behaviors (14), (17),
(18) are only expected asymptotically. Since numerical simu-
lations can only access a finite time region, preasymptotic
effects may be present. In particular in numerical simulations
of the Ising model with a nonconserved order parameter, one
usually observes an effective exponent 1/z,,=0.48 in place
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of 1/z=0.5. The integrated response function has been also
shown [10,15] to be affected by corrections to scaling. These
can be conveniently discussed in terms of the effective ex-
ponent, defined as
JdlIn t,s

Xag(t:8) | 1)

aeff(y,s) - dlns

y
With a scaling form such as Eq. (18), one would have
a,;(y,s)=a,, independent of y and s. However, if preasymp-
totic effects are present, the effective exponent takes a value
which depends both on y and s. For p=2 it was shown [15]
that, because of this, a,r/(y,s) is found in numerical simula-
tions in the range 0.25=<a,(y,s) =0.28.

B. Numerical results

In the following we will present the numerical results.
Setting J=1, for each case considered we simulated a square
lattice of size 1000% with periodic boundary conditions and
an average over 100 realizations was performed. Statistical
errors, when not explicitly plotted in the figures, are compa-
rable to the thickness of the lines.

For p=3 there is a ferro-paramagnetic transition at 7}
=1.326 while for p=6, according to Eq. (4), one has T,
=(.645. We performed a series of simulations of quenches
to T,<T,, with Ty=1/2 or Ty=1 for p=3 and p=6, respec-
tively. Typical configurations of domains in the late stage are
shown in Fig. 2. Notice the simultaneous presence of inter-
faces and vortices. These are defined analogously to those of
O(N) models: on encircling a vortex the order parameter
rotates by +27r (although in the clock model rotations are
obtained by discrete steps). While for p=3 vortices and in-
terfaces between different phases are all energetically
equivalent, in the case p=6 one has the additional feature of
different kinds of vortices and interfaces. Let us consider a
domain characterized by having all the spins pointing along
the direction #=27mn/p. Spins belonging to the domain are
characterized by having the same value of n;, n;=n. This
domain can be separated by an interface from another do-
main where spins point along a different direction 6
=2arm/p. Clearly, interfaces between domains of contiguous
phases, namely with n=m=1 are energetically less expensive
then the others. The more energetically expensive interfaces
are eliminated faster from the system (they are already prac-
tically absent in Fig. 2). This fact influences considerably the
topology of the growing structure. For instance, one clearly
observes that between two domains of noncontiguous
phases, say with n=m and n=m+2, a thin slab of phase n
=m+1 is interposed in order to minimize energy.

Analogously one observes also different kinds of vortices.
Points where six phases meet are energetically favored, but
vortices where a lower number of phases meet can also be
present. Moreover, there are also points where four (or more)
domains meet, but two of them belong to the same phase:
Encircling such points one may enter domains characterized
respectively by, say, the sequence n, n+1, n+2, n+1 again.
Clearly, encircling the most energetically favored vortices
one finds all the phases according to the sequence n, n+1,
n+2, n+3, n+4, n+5, n+6 (or in reverse order). As for the
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FIG. 3. (Color online) Comparison between L,(z), L,(¢) and
p(t)~! for p=3 (left) and p=6 (right).

interfaces, the high energy vortices are quickly removed and
a typical late stage configuration, as that of Fig. 2, contains
practically only the lowest energy vortices. The presence of
all these different kind of defects in the system is possibly
the origin of the long lasting preasymptotic effects discussed
below.

A comparison between L,(1), L,(t), and p(¢)~! is shown in
Fig. 3. After an early stage when domains are formed and
scaling does not hold, L,(z), Ly(¢), and p()~! start growing
with an approximate power law behavior and for long times
one has L, (t) = Ly(t) = p~!(¢) [for p=6, p(t)~! does not obey a
power law behavior in the range of simulated times. How-
ever, for the longest simulated times the effective exponent
seems to approach a value roughly comparable with that of
L,(t) and L,(¢)]. This implies that Eq. (15) is obeyed asymp-
totically. We recall that for a system containing only vortices,
such as the XY model, one would instead expect the relation
(16). Regarding the coarsening exponent, in the decade
10*~10° for p=3 we measure 1/2,4=0.486+0.002, 1/z,4
=0.484+0.002, and 1/z,4=0.478+0.002 from L,(#), Ly(1),
and p(¢)~', while for p=6 we get 1/2,4/=0.467+0.003,
1/2,4=0.474£0.003, 1/z,4=0.450+0.008. These values
(apart from the last one which is evidently a still pre-
asymptotic effective exponent) are compatible with the value

041106-5



CORBERI, LIPPIELLO, AND ZANNETTI

'
\
AR ]
\
0.8 — \\ Porod _
\
Lo\ J
\
\
o, 06 \\ —
s \
S b\ .
z v
204 -
@]
0.2 -
0 -
L . . L L | . L L
0 10
X
(a)
7 . — T . ——
\
AR ]
0.8 \\ Porod |
\
L\ i
\
\
oL, 06 \ =
= \
= L \ o
5] \
204 —
)
02— —
0 -
P T (TR NN TN IS SR NN TR (N SR NN S N SR S
0 1 2 3 4 5 6 7 8 9 10
X
(b)

FIG. 4. (Color online) Data collapse of G,,(r,r) against x
=r/L,(1) for several times 7, generated from #,=Int[exp(n/2)+1]
with n ranging from 13 to 22 and p=3 (left) or p=6 (right).

1/z=1/2 of the Ising model. The different initial behaviors
of L,(t), Ly(t), and p(r)~", signal that preasymptotic effects
are present up to very long times. This is probably related to
the presence of different types of defects. Note also that, at
the longest time considered, the density of defects with p
=6 is more than three times larger than with p=3.

In Fig. 4 we test the scaling form (14) of the equal time
correlation function. We plot G,,(r,1)/M* against x
=r/L,(t) for several values of r in the two decades range
[6.4X 10>~6.4 X 10*]. The data show a good collapse on a
single master curve g(x). For small x the Porod’s behavior
1—g(x) ~x is very neatly observed.

We turn now to consider two time quantities. In Fig. 5 the
autocorrelation function is plotted against y for different val-
ues of s in the range [100—3200]. As already observed when
discussing Fig. 3, scaling is only approximatively obeyed in
this regime. This is mirrored by C,(t,s): Full data collapse
is not found. Regarding Fig. 3, we also noticed that scaling
improves as time gets larger and it is reasonably well obeyed
for the longest simulated times. The same conclusion can be
drawn, for p=3, from Cag(t,s). Indeed, in Fig. 5 one can
observe that the data collapse improves pushing s and y to
larger values. In fact, although the data collapse of the curves

C,y(t9)
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FIG. 5. (Color online) C(z,s) is plotted against y for p=3 (left)
with s=100, 200, 400, 800, 1600, 3200 and for p=6 (right) with
s=400, 800, 1600, 3200. In the insets C(z,0) is plotted against 7.

is poor for small y it gets better increasing y and, for y
>10, all the curves collapse. Moreover, the quality of the
collapse improves also increasing s. Indeed, while the curves
with small s do not collapse (except, as anticipated, for y as
large as y>10) the two curves with the largest values of s
(s=1600 and 3200) practically coincide for all y>2. For p
=6 the collapse is worse. Coming to the asymptotic behavior
of the scaling function A(y) ~ y™ 7, it is numerically too de-
manding to reach the asymptotic large-y region with the val-
ues of s considered in Fig. 5. Then, we have evaluated A\
from the large ¢ behavior of C(#,0). This quantity is shown in
the insets of Fig. 5. In the range t €[4 X 10*,10°] we find
N/z=0.61+0.01 and N\/z=0.57+0.01 for p=3 and p=6. For
p=3 this value is consistent with the value N/z=5/8
=0.625 of the Ising model, keeping also into account that the
effective exponent we measure is still slightly increasing at
the longest simulated times. For p=6 the measured exponent
is somewhat smaller than for p=3 and for the Ising model,
but the fact that it keeps still growing at the longest simu-
lated times suggests that asymptotically the same value A
=5/8=0.625 could be obtained. This results suggest that
there could be a unique nonequilibrium universality class for
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FIG. 6. (Color online) Tyx,,(,s) is plotted against ¢ for fixed
values of s. The dashed line is the power law 029,

every 2=p< . This hypothesis can be tested by consider-
ing the integrated response function. This quantity, for p=3,
is plotted against ¢ in Fig. 6, showing a marked dependence
on s. Starting from zero at t=s, x,,(t,s) reaches a maximum
at t==2s and then decreases to zero with a power law behav-
ior. A similar behavior is observed for p=6. According to Eq.
(18), by fixing y to a certain value and varying s or equiva-
lently ¢, the data should follow a power law with exponent
—a,. As an example, the points corresponding to y=4, which
have been marked with stars in the log-log plot of Fig. 6, are
approximatively aligned on a straight line of slope
0.26+0.01. A similar analysis can be performed for every
value of y.

In order to make a quantitative analysis of this exponent,
and to detect preasymptotic effects, in Fig. 7 we plot ,,(t,s)
for fixed values of y against s. According to Eq. (21) the
slope of these lines is a,/(y,s) and, if scaling (18) holds, one
should find a,(y,s) =a,. Preasymptotic effects, instead, in-
troduce a weak dependence of this exponent on s and y.
Apart from the curve y=2, which corresponds to very early
times, the slopes of all the curves are compatible with Eq.
(20), namely with a,=1/4 (for p=3 in the range s
€ [800-3200] we find a,p(y,s)=0.25-0.30, depending on
y. For p=6 the effect of preasymptoticity is smaller and one
finds a,(y,s) =0.27 for every value of y and s). This pattern
of behavior of a,(y,s) is similar to what is observed in the
Ising model where a,/(y,s) ranges in the interval, a,z(y,s)
=[0.25-0.28].

The data collapse of s'*x,,(t,5) vs y expected from Eq.
(18) is shown in Fig. 8. For p=6 the collapse of the two
curves with the largest s (s=1600, 3200), is good at suffi-
ciently large y (y>4). It is poorer for p=3. Note also that the
asymptotic behavior f(y)~y~"* for y—o is well obeyed,
consistently with Eq. (19), again confirming a,=1/4 and rul-
ing out the value a,=0 appropriate to the XY model. These
results strengthen the conclusion that the clock model below
T, does not belong to the XY universality class and that the
nonequilibrium universality class is the same for all 2=p
<o,

PHYSICAL REVIEW E 74, 041106 (2006)
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FIG. 7. (Color online) Tyx,,(t,s) is plotted against s for p=3
(left) and p=6 (right), with fixed values of y (y=2, 4, 6, 8, 10, 12,
14, 16, 18 from top to bottom). Numerical values are marked with
error bars, continuous lines are guides for the eye.

Let us consider the model with p=6 quenched to the criti-
cal region Ty =T;=T,. In the late stage the correlation func-
tion obeys Eq. (2). From this equation one has

(1) = f drG(r,1) o L(1)34 7 ~ (B4l (22)

L(¢) can then be extracted as
L(1) = I(r) 13-4 (23)
The autocorrelation function obeys [14,23]
C(t,s) = (t— s+ 1g)" 2D (y) (24)

where £, is a microscopic time. Neglecting 7, for t—s>> ¢,
C(z,s) can be rewritten in scaling form

Ct,5) = s~ n(y), (25)

where h(y)=(y— 1)‘("1‘2*’7)/1}7())), with the property h(y)
~y™MZ for y>> 1. Notice that, when using the y variable in
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FIG. 8. (Color online) Tys"*x,,(t,s) is plotted against y for
fixed values of s for p=3 (left) and p=6 (right).

the large-s limit, the condition 7—s>> 1, for the validity of Eq.
(25) becomes y>1. For all y>1, then, one should expect
data collapse of the curves s“~*?2C(z,s) against y for dif-
ferent choices of s.

The response function is given by [14,23]

Rt ) =(r—1"+ to)‘(d‘3+”)’zf<§) ) (26)

Splitting the integral of Eq. (9) into two integration domains,
introducing the arbitrary number e, the integrated response
function can be written as

l-€ t —(d=-3+n)/z_
X(t,s) ~ -2+ f du(l —u+ 70) f(u)
y

1 o —(d—3+n)/z~
+f du(l —u+7> Sf(u) (27)
1-€

1 11
=f<d‘2+”>/{11(y,7°,e) + 12(;0, e) } , (28)

PHYSICAL REVIEW E 74, 041106 (2006)

where wu=t'/t. For large times ¢ one can choose
to/t<< €< 1/2. The condition #,/t< € allows one to neglect
to/t with respect to 1 —u in the first integral, whose value can

then be evaluated as I,(y,fy/t,€)=F(l1—€,t,/t1)-F(y,0),

where dF(u,to/t)/duz(l—u+t7°)_(d_3+7])/7(u). Let us con-

sider now the second integral I,(ty/t,€)=F(1,ty/t)—F(1
—€,1y/1). Here, since €< 1/2, one can setf(u) = f(1), so that

F(1,t/1) = (t5/ 1)~ 2*7/2f(1)z/(d—2+ 7). One then arrives
at

f(l) t—d—2+17/z

(d=2+ )iz ° (29

x(t,s) = 7 HEf(y) +
where f(y)=-F(y,0). Letting t— o, x(¢,s) must converge to
the equilibrium susceptibility whose value is given by the
fluctuation dissipation theorem, ng=TlZl. This leads to the

identification of the last term on the right-hand side of Eq.
(29) with x,, [24], and Eq. (29) can be cast as

X(.8) = Xeq ~ S~ (y), (30)

where a x:(d -2+ 17)/z. Notice that, differently from the case
of quenches in the ordered phase, here the exponent a, is
directly related to the equilibrium critical exponents # and z.
We recall that, in the KT phase, the exponents 7,z,\ depend
on temperature.

It is interesting to discuss the parametric plot of x(z,s)
against C(z,s). Since C(tz,s) is a monotonically decreasing
function of ¢, this time can be re-parametrized in terms of C,
obtaining x(z,s)=x(C,s). This quantity is important because,
if appropriate conditions are satisfied, its large-s limit

X(C) =lim¥(C,s) (31)

§—0

provides a connection between static and dynamic properties
[25,26] through the relation

&X(C)
dc* |,

Plg)=-T; . (32)
where P(q) is the overlap probability function of the equilib-
rium state at T=Tj. As discussed in Ref. [14], a universal
linear relation

Tf)’(\(c) = Terq - C’ (33)

as for equilibrated systems, is expected for quenches to a
critical point or into a critical phase, although the system is
aging for any finite time.

Numerical results

In this section we present results of simulations of the
model with p=6 quenched to T, <T;=0.76 <T,. A typical
configuration of domains in the late stage is shown in Fig. 9.
In this case, there are no compact domains.

The quantity I(¢) is shown in Fig. 10. Here one observes
that the power law behavior sets in very early. This implies,
through Eq. (22), that also L(r) has a power law growth. The
effective exponent has a small tendency to increase as t gets
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FIG. 9. (Color online) Configuration of the system at +=3200
after a quench to 7,=0.76.

larger: We measure an exponent 0.34 in the decade 10°—10°
and 0.35 for +>10*. The exponents 7 and z are known nu-
merically [9]. At 7;=0.76 their measure gives #=0.17 and
z=2.18, yielding (3—d-7)/z=0.38. This number is consis-
tent with the value 0.35 obtained from /(7) by means of Egs.
(23), taking also into account that the effective exponent we
measure is still increasing at the longest simulated times.

In Fig. 11 we test the scaling form (2) of the equal time
correlation function. We plot 77G,,,(r,?) against x for several
values of f, where L(f) is computed through Eq. (23). The
data show a very good collapse on a single master curve
g(x). Notice that, as expected, Porod’s behavior at small x is
not observed, due to the noncompact nature of the domains.

We turn now to consider two time quantities. In Fig. 12
the autocorrelation function is shown. There is a tendency to
a better data collapse for larger times, implying that the scal-
ing symmetry is still not exactly obeyed. For the two largest
values s=50 and s=100, however, the collapse is rather
good.

Let us consider the integrated response function, that is
shown in Fig. 13. Here one observes an analogous situation:

100 ———rrrr

T T T T T T T T T T T T

I(t)

Ll

1 10 100 1000 10000
t

) N

L

100000

FIG. 10. (Color online) The behavior of I(¢). The dashed line is
the power law %3,
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G(r,t)

FIG. 11. (Color online) Data collapse of r”G(r,t) against x for
several times (r=666, 1097, 1809, 2981, 4915, 8104, 13360,
17 155).

the collapse expected on the basis of Eq. (30) is rather good
for the two largest values of s.

In Fig. 14 the parametric plot of ¥(C,s) is shown. For the
largest values of C, ¥(C,s) obeys Eq. (33). As C is decreased
the curves flatten and T,x(C,s) lies below the asymptotic
curve (33). However, in the limit of infinite times t— o,
which corresponds to C—0, each curve must necessarily
obey Eq. (33), since x(z,s) approaches the equilibrium value
Xeq=1/Ty. Then, moving toward C=0, at some point the
curves become steeper in order to meet the value x,, at C
=0. Changing s, the same qualitative behavior is observed,
but the curve gets higher, slowly approaching the asymptotic
form (33) for all values of C in the large s limit. This pattern
of ¥(C,s) is analogous to what observed in the spherical
model quenched at the critical point and is expected in full
generality whenever a system is quenched to a critical point
or to a critical phase [14]. It must be noticed that the conver-
gence to the trivial form (33) is very slow because it is regu-
lated by the rather small exponent 7(7) [14]. Since the ex-
ponent 7(7T) at the lower transition temperature is expected
to behave as 7(T;)=4/p?, the asymptotic behavior can be

T L B A T T T T T T T L

— s=10
! o 5=20

X -- s=50
S =+ 5=100

|

sV (t,5)

FIG. 12. (Color online) Data collapse of C(z,s), for s=10, 20,
50, 100 (from bottom to top).
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FIG. 13. (Color online) Data collapse of x(z,s) in the quench at
T,=0.76, for s=10, 20, 50, 100 (bottom up).

arbitrarily delayed increasing p. The simulations presented in
this section have been planned out in order to show at least a
glimpse of this convergence. As discussed in Ref. [14], pre-
vious studies of the KT phase of the XY model, for which the
same asymptotic form (33) is expected, interpreted a preas-
ymptotic nontrivial form of ¥(C,s) analogous to the one of
Fig. 14 as a reminiscence of the parametric plot of the d=3
Edwards-Anderson model [18] or used it to infer the
asymptotic value of the fluctuation-dissipation ratio [27]. The
simulations presented here clearly show, instead, that this
pattern is preasymptotic and the data are consistent with a
convergence to the expected trivial limiting form (33).

V. CONCLUSIONS

In this paper a rather general numerical investigation of
the off-equilibrium dynamics of the clock model after a tem-
perature quench has been carried out. We have considered
both quenches into the ordered phase 7,<<T; for systems
with p=3 and p=6 and a quench to the critical, Kosterlitz-
Thouless phase T} <T,;<T,, for p=6. In all these cases we
analyzed the behavior of one-time quantities, such as the
equal time correlation function or the characteristic length,
and two-times quantities, such as the integrated response and
the autocorrelation function. This study provides a quite gen-
eral scenario of the scaling properties of the dynamics and
allows the comparison with the behavior of other well stud-
ied coarsening systems such as the Ising model or the XY
model, which correspond to the case p=2 and p=%, respec-
tively. We find that dynamical scaling is obeyed in all the
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FIG. 14. (Color online) Parametric plot of x(z,s) vs C(¢,s) in the
quench at 7;=0.76, for s=10, 20, 50, 100 (bottom up). The dashed
line is the asymptotic curve Tpx(C)=Tyx.,~C. Eq. (33).

cases considered. In the ordered region, the dynamical expo-
nents are the same of those of the Ising model. While the
result z=2 for the clock model was already well known [5,6]
the values of the exponents N and a, have been measured for
the first time and deserve some considerations. These values
suggest that the clock model belongs to the nonequilibrium
universality class of the Ising model. Moreover, finding the
same values of the exponents for both p=3 and p=6 implies
that the system is in the same equilibrium universality class
for all p <. Finally, the value a,=1/4 fits with the general
phenomenological formula (20) for coarsening systems. This
strengthens the idea that the nontrivial dimensionality depen-
dence of a, predicted by Eq. (20), may have a general valid-
ity for coarsening dynamics.

It has been recently proposed [22,28] that, limited to the
case of systems where topological defects are exclusively
domain walls, Eq. (20) may be related to the dynamical
roughening of the interfaces. The fact that the value of a is
the same also in the clock model implies that the asymptotic
contribution of vortices to the response function is not im-
portant, at least at the level of the exponent a,, and suggests
that the behavior of the interfaces is the unifying feature that
makes systems with different degeneracy p fall into the same
universality class.
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